Cigarette

Minggu, 19 Mei 2013

Deadlock


Deadlock
merupakan keadaan dimana dua program memegang kontrol terhadap sumber daya yang dibutuhkan oleh program yang lain. Tidak ada yang dapat melanjutkan proses masing-masing sampai program yang lain memberikan sumber dayanya, tetapi tidak ada yang mengalah.
Deadlock yang mungkin dapat terjadi pada suatu proses disebabkan proses itu menunggu suatu kejadian tertentu yang tidak akan pernah terjadi. Dua atau lebih proses dikatakan berada dalam kondisi deadlock, bila setiap proses yang ada menunggu suatu kejadian yang hanya dapat dilakukan oleh proses lain dalam himpunan tersebut.

Karakteristik Deadlock
Karakteristik-karakteristik ini harus dipenuhi keempatnya untuk terjadi deadlock. Namun, perlu diperhatikan bahwa hubungan kausatif antara empat karakteristik ini dengan terjadinya deadlock adalah implikasi. Deadlock mungkin terjadi apabila keempat karakteristik terpenuhi.

Empat kondisi tersebut adalah:
1.Mutual Exclusion . Kondisi yang pertama adalah mutual exclusion yaitu proses memiliki hak milik pribadi terhadap sumber daya yang sedang digunakannya. Jadi, hanya ada satu proses yang menggunakan suatu sumber daya. Proses lain yang juga ingin menggunakannya harus menunggu hingga sumber daya tersebut dilepaskan oleh proses yang telah selesai menggunakannya. Suatu proses hanya dapat menggunakan secara langsung sumber daya yang tersedia secara bebas.
2.Hold and Wait . Kondisi yang kedua adalah hold and wait yaitu beberapa proses saling menunggu sambil menahan sumber daya yang dimilikinya. Suatu proses yang memiliki minimal satu buah sumber daya melakukan request lagi terhadap sumber daya. Akan tetapi, sumber daya yang dimintanya sedang dimiliki oleh proses yang lain. Pada saat yang sama, kemungkinan adanya proses lain yang juga mengalami hal serupa dengan proses pertama cukup besar terjadi. Akibatnya, proses-proses tersebut hanya bisa saling menunggu sampai sumber daya yang dimintanya dilepaskan. Sambil menunggu, sumber daya yang telah dimilikinya pun tidak akan dilepas. Semua proses itu pada akhirnya saling menunggu dan menahan sumber daya miliknya.
3.No Preemption . Kondisi yang selanjutnya adalah no preemption yaitu sebuah sumber daya hanya dapat dilepaskan oleh proses yang memilikinya secara sukarela setelah ia selesai menggunakannya. Proses yang menginginkan sumber daya tersebut harus menunggu sampai sumber daya tersedia, tanpa bisa merebutnya dari proses yang memilikinya.
4.Circular Wait . Kondisi yang terakhir adalah circular wait yaitu kondisi membentuk siklus yang berisi proses-proses yang saling membutuhkan. Proses pertama membutuhkan sumber daya yang dimiliki proses kedua, proses kedua membutuhkan sumber daya milik proses ketiga, dan seterusnya sampai proses ke n-1 yang membutuhkan sumber daya milik proses ke n. Terakhir, proses ke n membutuhkan sumber daya milik proses yang pertama. Yang terjadi adalah proses-proses tersebut akan selamanya menunggu.


Penanganan Deadlock
4 cara untuk menangani keadaan deadlock, yaitu:
1.Pengabaian.
Maksud dari pengabaian di sini adalah sistem mengabaikan terjadinya deadlock dan pura-pura tidak tahu kalau deadlock terjadi. Dalam penanganan dengan cara ini dikenal istilah ostrich algorithm. Pelaksanaan algoritma ini adalah sistem tidak mendeteksi adanya deadlock dan secara otomatis mematikan proses atau program yang mengalami deadlock. Kebanyakan sistem operasi yang ada mengadaptasi cara ini untuk menangani keadaan deadlock. Cara penanganan dengan mengabaikan deadlock banyak dipilih karena kasus deadlock tersebut jarang terjadi dan relatif rumit dan kompleks untuk diselesaikan. Sehingga biasanya hanya diabaikan oleh sistem untuk kemudian diselesaikan masalahnya oleh user dengan cara melakukan terminasi dengan Ctrl+Alt+Del atau melakukan restart terhadap komputer.
2.Pencegahan.
Penanganan ini dengan cara mencegah terjadinya salah satu karakteristik deadlock. Penanganan ini dilaksanakan pada saat deadlock belum terjadi pada sistem. Intinya memastikan agar sistem tidak akan pernah berada pada kondisi deadlock. Akan dibahas secara lebih mendalam pada bagian selanjutnya.
3.Penghindaran.
Menghindari keadaan deadlock. Bagian yang perlu diperhatikan oleh pembaca adalah bahwa antara pencegahan dan penghindaran adalah dua hal yang berbeda. Pencegahan lebih kepada mencegah salah satu dari empat karakteristik deadlock terjadi, sehingga deadlock pun tidak terjadi. Sedangkan penghindaran adalah memprediksi apakah tindakan yang diambil sistem, dalam kaitannya dengan permintaan proses akan sumber daya, dapat mengakibatkan terjadi deadlock. Akan dibahas secara lebih mendalam pada bagian selanjutnya.
4.Pendeteksian dan Pemulihan.
Pada sistem yang sedang berada pada kondisi deadlock, tindakan yang harus diambil adalah tindakan yang bersifat represif. Tindakan tersebut adalah dengan mendeteksi adanya deadlock, kemudian memulihkan kembali sistem. Proses pendeteksian akan menghasilkan informasi apakah sistem sedang deadlock atau tidak serta proses mana yang mengalami deadlock. Akan dibahas secara lebih mendalam pada bagian selanjutnya.


Pencegahan Deadlock
Pencegahan deadlock dapat dilakukan dengan cara mencegah salah satu dari empat karakteristik terjadinya deadlock. Berikut ini akan dibahas satu per satu cara pencegahan terhadap empat karakteristik tersebut.
1.Mutual Exclusion .Kondisi mutual exclusion pada sumber daya adalah sesuatu yang wajar terjadi, yaitu pada sumber daya yang tidak dapat dibagi (non-sharable). Sedangkan pada sumber daya yang bisa dibagi tidak ada istilah mutual exclusive. Jadi, pencegahan kondisi yang pertama ini sulit karena memang sifat dasar dari sumber daya yang tidak dapat dibagi.
2.Hold and Wait . Untuk kondisi yang kedua, sistem perlu memastikan bahwa setiap kali proses meminta sumber daya, ia tidak sedang memiliki sumber daya lain. Atau bisa dengan proses meminta dan mendapatkan sumber daya yang dimilikinya sebelum melakukan eksekusi, sehingga tidak perlu menunggu.
3.No Preemption . Pencegahan kondisi ini dengan cara membolehkan terjadinya preemption. Maksudnya bila ada proses yang sedang memiliki sumber daya dan ingin mendapatkan sumber daya tambahan, namun tidak bisa langsung dialokasikan, maka akan preempted. Sumber daya yang dimiliki proses tadi akan diberikan pada proses lain yang membutuhkan dan sedang menunggu. Proses akan mengulang kembali eksekusinya setelah mendapatkan semua sumber daya yang dibutuhkannya, termasuk sumber daya yang dimintanya terakhir.
4.Circular Wait . Kondisi 'lingkaran setan' ini dapat 'diputus' dengan jalan menentukan total kebutuhan terhadap semua tipe sumber daya yang ada. Selain itu, digunakan pula mekanisme enumerasi terhadap tipe-tipe sumber daya yang ada. Setiap proses yang akan meminta sumber daya harus meminta sumber daya dengan urutan yang menaik. Misalkan sumber daya printer memiliki nomor 1 sedangkan CD-ROM memiliki nomor 3. Proses boleh melakukan permintaan terhadap printer dan kemudian CD-ROM, namun tidak boleh sebaliknya.
Penghindaran Deadlock
Penghindaran terhadap deadlock adalah cara penanganan yang selanjutnya. Inti dari penghindaran adalah jangan sembarangan membolehkan proses untuk memulai atau meminta lagi. Maksudnya jangan pernah memulai suatu proses apabila nantinya akan menuju ke keadaan deadlock. Kedua, jangan memberikan kesempatan pada proses untuk meminta sumber daya tambahan jika penambahan tersebut akan membawa sistem pada keadaan deadlock. Tidak mungkin akan terjadi deadlock apabila sebelum terjadi sudah kita hindari.
Langkah lain untuk menghindari adalah dengan cara tiap proses memberitahu jumlah kebutuhan maksimum untuk setiap tipe sumber daya yang ada. Selanjutnya terdapat deadlock-avoidance algorithm yang secara rutin memeriksa state dari sistem untuk memastikan tidak adanya kondisi circular wait serta sistem berada pada kondisi safe state. Safe state adalah suatu kondisi dimana semua proses mendapatkan sumber daya yang dimintanya dengan sumber daya yang tersedia. Apabila tidak bisa langsung, ia harus menunggu selama waktu tertentu, kemudian mendapatkan sumber daya yang diinginkan, melakukan eksekusi, dan terakhir melepas kembali sumber daya tersebut. Terdapat dua jenis algoritma penghindaran yaitu resource-allocation graph untuk single instances resources serta banker's algorithm untuk multiple instances resources.
Dalam banker's algorithm, terdapat beberapa struktur data yang digunakan, yaitu:
Available . Jumlah sumber daya yang tersedia.
Max . Jumlah sumber daya maksimum yang diminta oleh tiap proses.
Allocation . Jumlah sumber daya yang sedang dimiliki oleh tiap proses.
Need . Sisa sumber daya yang masih dibutuhkan oleh proses, didapat dari max- allocation.
Kemudian terdapat safety algorithm untuk menentukan apakah sistem berada pada safe state atau tidak.

Pendeteksian Deadlock
Pada dasarnya kejadian deadlock sangatlah jarang terjadi. Apabila kondisi tersebut terjadi, masing-masing sistem operasi mempunyai mekanisme penanganan yang berbeda. Ada sistem operasi yang ketika terdapat kondisi deadlock dapat langsung mendeteksinya. Namun, ada pula sistem operasi yang bahkan tidak menyadari kalau dirinya sedang mengalami deadlock. Untuk sistem operasi yang dapat mendeteksi deadlock, digunakan algoritma pendeteksi. Secara lebih mendalam, pendeteksian kondisi deadlock adalah cara penanganan deadlock yang dilaksanakan apabila sistem telah berada pada kondisi deadlock. Sistem akan mendeteksi proses mana saja yang terlibat dalam kondisi deadlock. Setelah diketahui proses mana saja yang mengalami kondisi deadlock, maka diadakan mekanisme untuk memulihkan sistem dan menjadikan sistem berjalan kembali dengan normal.
Mekanisme pendeteksian adalah dengan menggunakan detection algorithm yang akan memberitahu sistem mengenai proses mana saja yang terkena deadlock. Setelah diketahui proses mana saja yang terlibat dalam deadlock, selanjutnya adalah dengan menjalankan mekanisme pemulihan sistem yang akan dibahas pada bagian selanjutnya. Berikut ini adalah algoritma pendeteksian deadlock.
Pemulihan Deadlock
Pemulihan kondisi sistem terkait dengan pendeteksian terhadap deadlock. Apabila menurut algoritma pendeteksian deadlock sistem berada pada keadaan deadlock, maka harus segera dilakukan mekanisme pemulihan sistem. Berbahaya apabila sistem tidak segera dipulihkan dari deadlock, karena sistem dapat mengalami penurunan performance dan akhirnya terhenti.
Cara-cara yang ditempuh untuk memulihkan sistem dari deadlock adalah sebagai berikut:

1.Terminasi proses.
Pemulihan sistem dapat dilakukan dengan cara melalukan terminasi terhadap semua proses yang terlibat dalam deadlock. Dapat pula dilakukan terminasi terhadap proses yang terlibat dalam deadlock secara satu per satu sampai 'lingkaran setan' atau circular wait hilang. Seperti diketahui bahwa circular wait adalah salah satu karakteristik terjadinya deadlock dan merupakan kesatuan dengan tiga karakteristik yang lain. Untuk itu, dengan menghilangkan kondisi circular wait dapat memulihkan sistem dari deadlock.Dalam melakukan terminasi terhadap proses yang deadlock, terdapat beberapa faktor yang menentukan proses mana yang akan diterminasi. Faktor pertama adalah prioritas dari proses-proses yang terlibat deadlock. Faktor kedua adalah berapa lama waktu yang dibutuhkan untuk eksekusi dan waktu proses menunggu sumber daya. Faktor ketiga adalah berapa banyak sumber daya yang telah dihabiskan dan yang masih dibutuhkan. Terakhir, faktor utilitas dari proses pun menjadi pertimbangan sistem untuk melakukan terminasi pada suatu proses.
2.Rollback and Restart . Dalam memulihkan keadaan sistem yang deadlock, dapat dilakukan dengan cara sistem melakukan preempt terhadap sebuah proses dan kembali ke state yang aman. Pada keadaan safe state tersebut, proses masih berjalan dengan normal, sehingga sistem dapat memulai proses dari posisi aman tersebut. Untuk menentukan pada saat apa proses akan rollback, tentunya ada faktor yang menentukan. Diusahakan untuk meminimalisasi kerugian yang timbul akibat memilih suatu proses menjadi korban. Harus pula dihindari keadaan dimana proses yang sama selalu menjadi korban, sehingga proses tersebut tidak akan pernah sukses menjalankan eksekusi.

Algoritma Banker
Algoritma resource allocation graph tidak dapat diaplikasikan pada sistem yang mempunyai beberapa anggota pada setiap tipe sumber daya.  Setiap proses sebelum dieksekusi harus menentukan jumlah sumber daya maksimum yang dibutuhkan.  Jika suatu proses meminta sumber daya kemungkinan proses harus menunggu.  Jika suatu proses mendapatkan semua sumber daya maka proses harus mengembalikan semua sumber daya dalam jangka waktu tertentu.

Struktur data yang digunakan untuk mengimplementasikan algoritma Banker akan menentukan state dari sumber daya yang dialokasikan oleh sistem.  Misalnya n = jumlah proses dan m = jumlah tipe resource.  Struktur data yang diperlukan :
Available :  Vektor panjang m. Jika Available[j] = k, terdapat k anggota tipe sumber daya Rj yang tersedia.
Max : matrik n x m.  Jika Max[i, j] = k, maka proses Pi  meminta paling banyak k anggota tipe resource Rj.
Allocation :  matrik n x m.  Jika Allocation[i, j] = k maka Pi sedang dialokasikan  k anggota tipe resource Rj.
•Need : matrik n x m. Jika Need[i, j] = k, maka Pi  membutuhkan  k anggota tipe resource Rj untuk menyelesaikan task.  Need[i, j] = Max[i, j]Allocation[i, j].
Beberapa notasi yang perlu diketahui adalah misalnya X dan Y adalah vektor dengan panjang n.   X ≤ Y jika dan hanya jika X[i] ≤ Y[i] untuksemua i = 1, 2, .., n. Sebagai contoh jika X = (1, 7, 3, 2) dan Y = (0, 3, 2, 1) maka Y ≤ X.

Algoritma Safety
Algoritma ini untuk menentukan apakah sistem berada dalam state selamat atau tidak.

1.   Work  dan Finish  adalah  vector  dengan  panjang  m dan n.   Inisialisasi : Work  = Available dan Finish[i] = false untuk  i = 1,3, …, n.
2.   Cari i yang memenuhi kondisi berikut :
(a) Finish [i] = false
(b) Needi ≤ Work
Jika tidak terdapat i ke langkah 4.
3.   Work = Work + Allocationi
Finish[i] = true
Kembali ke langkah 2.
4.   Jika Finish [i] == true untuk semua i, maka sistem dalam state selamat.

Algoritma Ostrich

Secara sederhana algoritma ini dapat dikatakan abaikan deadlock seakan-akan tidak ada masalah apapun dengannya. Algoritma ini disadur oleh Sistem Operasi Unix,meskipun memerlukan biaya  yang cukup besar untuk mengatasi sebuah deadlock.
Dengan mengasumsikan bahwa lebih efektif untuk memungkinkan masalah itu terjadi dibandingkan upaya pencegahannya. Pendekatan ini dapat digunakan dalam menangani deadlock pada pemrograman concurrent jika deadlock diyakini sangat jarang terjadi, dan jika biaya untuk mendeteksi atau pencegahan lebih tinggi.

Tidak ada komentar:

Posting Komentar